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 Abstract: Crystalline molecular explosives are key components of engineered explosive 

formulations. In precision applications a high degree of consistency and predictability is desired 

under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical 

response and failure, to detonation initiation, and ultimately the detonation performance of the 

material is tied to accurate knowledge of the material structure and first stage of deformation: 

elasticity.  The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene 

trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of 

material and measurement variability, and computational methods are described in detail. 

Experimental determinations of elastic tensors are compared, and an evaluation of sources of 

error is presented. Computed elastic constants are also compared for these materials and for 

triaminotrinitrobenzene (TATB), for which there are no measurements. 
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1 Introduction 
 
Robert Hooke published his work describing the proportionality of force and distance in springs 

and solid materials in 1678.[1] The adaptation of Hooke’s Law, by Thomas Young in 1807,[2] to 

describe material stress and strain with a simple proportionality constant, remains a fundamental 

area of study in materials. In explosives, it is both a starting point for first-principles models of 

solid behaviors and the link to plastic flow, failure, and chemical reaction, and an essential 

material property for the prediction of explosive performance in hydrodynamic states. 

A crucial aspect of the performance and safety response of explosives relates to the 

translation of mechanical stimuli to chemical energy release. It has been known by theory and 

inferential experiments that material perturbations of many kinds may give rise to “hot spots” 

where energy localizes, resulting in increased temperatures and the onset of chemical reaction. 

The concept of energy localization, or hot spots, through several general mechanisms, including 

void collapse and friction along with other means was introduced in the 1940s.[3-5],[6] Accurate 

constitutive relationships, incorporating elasticity and rate-dependent plasticity, are necessary to 

quantify the temperature distribution in the material surrounding these defects and understand the 

efficacy they have on initiation.[7]  

 The compressibility of  explosive material is also a factor in predicting the peak pressure 

achieved upon detonation.[8-10] Accurate constitutive relationships provide constraints on reactant 

equation of state.[11-14] The reactant bulk modulus and its pressure derivatives are commonly 

extrapolated to detonation pressures, and with the product equation of state, predict the peak 

detonation pressure and reaction zone.    

In this article, we will focus on the common explosives pentaerythritol tetranitrate 

(PETN), cyclotrimethyltrinitramine (RDX), and cyclotetramethyltetranitramine (HMX), for 
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which much has been measured, predicted, and written over the past several decades. Given the 

increasing complexity of these three materials from the standpoint of crystal structure 

(tetragonal, orthorhombic, and monoclinic, respectively) and associated properties, it is 

instructive to evaluate information available for each, and how conclusions can be drawn across 

these materials and extrapolated to others. This is particularly important for low symmetry 

molecular materials, whose complexity makes physical measurement challenging. We will then 

extend to a comparison of predictions for triclinic triaminotrinitrobenzene (TATB), for which 

few property measurements have been made.  

To evaluate the response of composite explosives to external stimuli, one must proceed 

through the four fundamental steps of solid mechanics: granular mechanics, elastic compression, 

plastic flow and failure, and phase transitions. Our focus is on elasticity for PETN, RDX, and 

HMX, and the evaluation of several types of measurement techniques, experimental results, and 

computational approaches. Given that crystal structure and simple compressibility is a 

fundamental check for models of materials, the accuracy of these measurements directly 

constrains the accuracy of predictions – especially where extrapolation is required. We will 

describe the potential sources of variability in elasticity measurement and associated predictions. 

Through review and analysis of available data, we will demonstrate the origin of much of the 

previous conflicting elasticity determinations and propose a path for increased accuracy in the 

future. We will also introduce new predictions of the elastic tensor of RDX and describe 

differences with experimental determinations and previous predictions for this and other 

materials.  

 
1.1  Mechanics of Explosives Crystals 
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During manufacture and impact loading of composite explosives, the energetic molecular 

crystal constituent undergoes deformation, beginning with elastic deformation. The molecule, 

crystal structure, microstructure, and deformation mechanisms combine to determine sensitivity 

to detonation during dynamic compression. In order to control and improve safety and 

performance deformation processes must be understood. Although deformation has been 

extensively studied in a wide range of materials, ranging from metals to polymers, by 

comparison, deformation in molecular crystals has received relatively little attention.  

PETN, RDX, and HMX are heavily used secondary explosives, with deformation 

behaviors studied in single crystal form and as-formulated, both quasi-statically and 

dynamically. Quasi-static and dynamic studies have explored microstructure, deformation 

mechanisms, Hugoniot elastic limits (HEL), polymorphic phase transformations, and initiation of 

detonation. Although these experiments have demonstrated the unique features of crystal 

mechanics and anisotropy, efforts to correlate static and dynamic effects, elastic and plastic 

deformation, defect contributions, and other factors with initiation has proven difficult.[15-29] A 

major focus of ongoing work is direct, in-situ observation of microstructural phenomena and 

fundamental properties.[30, 31] Initiation sensitivity in formulations is variable and dependent on 

impurities, microstructure, and formulation parameters. Initiation mechanisms are uncertain for 

both formulated and single crystal forms, although many mechanistic models have been 

proposed. Except in cases of strong shock, deformation consisting of yielding, plastic flow, and 

polymorphic phase transformations precedes initiation of detonation.[32] 

Constitutive equations describing the mechanics of materials are developed in a logical 

progression.[33] This progression begins with understanding the structure of materials from point 

group to space group, including polymorphism, to defect structures, to deformation, beginning 
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with elasticity and progressing to a three-dimensional combined-stress theory of plasticity and 

including the first static yield conditions and post-yield behavior, before moving to dynamic 

yield conditions and post-yield behavior. We set out to follow this approach for explosives from 

structure to initiation and hydrodynamic behaviors, but we immediately found serious 

complexities with elasticity that limit accurate predictions beyond that state. 

 

2 The Importance of Elasticity in Crystalline Explosives 

Elasticity is critically important in our understanding and prediction of explosive 

materials, whether or not solid mechanics plays any role at all in initiation. Even if prompt shock 

in intentional initiation is strong, the structure and compressibility of the explosive are relevant. 

The importance in this case is outlined by the Zel’dovich, von Neumann, Doering (ZND) theory 

of detonation.[8-10] The compressibility of the reactant, which is the bulk modulus and its 

derivivative with pressure, with a Rayleigh line tangent to the compressibility of the detonation 

products, determines the peak hydrodynamic pressure upon detonation and the reaction zone of 

the decomposition.  

There are many material responses in which it is important to understand non-initiating 

behaviors, including deformation and failure, since damage may alter the safety of the explosive 

material and sets a new initial condition for subsequent performance.  

Finally, softer insults may induce unintentional initiation. These insults are typically 

associated with safety scenarios, and span many rates and mixed physical and chemical 

pathways. The degree to which each type of insult involves solid mechanics varies prior to 

reaching a hydrodynamic state, but all begin in this regime.[34]  
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X-ray and neutron diffraction accurately determine crystal structures to high precision. 

Except in cases of high defect content or solid solutions, the starting structure of the material is 

usually well determined. Crystal structures are accurately determined for PETN, RDX, HMX, 

and TATB at standard temperature and pressure conditions.  

The hydrodynamic link in the ZND model is perhaps most directly explored through 

compression experiments such as in the diamond anvil cell (DAC). DAC data for these materials 

and associated compressibility and phase behavior is an active area of research and so rich that it 

merits its own review. However, we can use a few examples to shed light on our focus on other 

methods for elastic property determination. Menikoff uses the example of HMX to demonstrate 

the importance of bulk modulus. Using all available published data on compressibility of HMX 

crystals, it is possible to fit an empirical compression curve through the data in so many ways 

that the extrapolation varies by more than 25% in compression at the detonation state, and this 

ambiguity is important in PBX materials containing HMX.[13, 14] These data, with errors, from 

one DAC study and the compared fits are shown in Figure 1. Bulk moduli ranging from 16 to 24 

GPa gave an excellent fit to this isothermal data. Fit ranges diverge even more when other data 

sets are included. The peak pressure can be accessed, at least for the Chapman-Jouget state, 

through inferential experiments that use metal expansion to fit equation of state (EOS) curves, 

but the approach from reactants is desirable to both validate the ZND theory and to add precision 

to the EOS. An accurate measurement of the full elastic tensor provides an anchor at points along 

the EOS, and this approach is especially useful if the full tensor determination can be made for 

other conditions, including temperature and pressure. Such measurements are possible, but they 

have been frustrated by large errors, and until recently these errors were not understood.  
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Fig. 1. Isothermal and shock Hugoniot data for HMX leads to large errors in extrapolation 

depending upon the fitting form and parameters of the EOS, as shown in the plot in the pressure-

reduced volume plane with data from Gump and Peiris.[35, 36] Bulk moduli ranging from 16 to 24 

GPa yielded low-residual fits to this data set, which leads to extrapolations to pressures that vary 

by more than 25% at the detonation state. This error is further compounded when other data sets 

are included.[12, 13] 

 

Every ambiguity in the properties of materials from initial structure to the hdrodynamic 

state confounds attempts to develop models for mechanical behavior and possible chemical 

response. Beginning with molecular structure and motions, as determined through electronic and 



 8 

vibrational spectroscopies, crystal structures are the first test of prediction. Because electronic 

structures, molecular vibrations, and crystal structures are typically so well characterized, a good 

starting point and validation is provided to predictions, even if crystal structure prediction itself 

is difficult given the soft, competitive intermolecular interactions. Prediction of small elastic 

perturbations of the crystal are themselves difficult as molecular and intermolecular interactions 

are subtle. Unfortunately, there is no way to be sure whether models that achieve known 

structures will accurately predict the perturbation response of these structures. If we had 

complete and accurate measurements of elastic response, in several physical conditions, elastic 

perturbation prediction would be physically bounded. Even the basic measurements have been 

prone to large errors and the origins of this error have not previously been understood. These 

errors in elasticity have serious consequences for predictive models when it is considered that 

every possible scenario we hope to predict – from defect structures to material deformation to 

phase changes to hydrodynamic flow and chemical reaction – begins with elastic deformation. 

 

3 Measurement of Elasticity 

Measurement of elastic constants by compression between platens is generally not possible for 

energetic materials because their anisotropic elasticity require too many geometries and because 

only relatively minute elastic strains are possible prior to brittle failure.[37] Mechanical resonance 

techniques work well for these materials, provided that adequate samples can be made and that 

the crystals are of orthorhombic or higher symmetry. This symmetry requirement stems from the 

data analysis method by which the elastic tensor is determined from the resonances.[38-40][41] 

Spanning orders of magnitude in frequency and volume, several techniques are available for the 
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determination of elastic tensors: resonant ultrasound spectroscopy (RUS),[42] pulse-echo 

ultrasound (P-E), impulsive stimulated scattering (ISS),[43] and Brillouin scattering.[44]  

All of these techniques have been used to measure elastic tensors for PETN and for RDX. 

For HMX, the monoclinic symmetry precludes unique solutions from data for the RUS 

technique, so there are fewer measurements. A comparison of measurements reveals large, non-

systematic variations. With no obvious correlation to the material or measurement technique, 

differences had been ascribed to potential sample purity and processing variations. 

P-E and ISS measurements of the tetragonal PETN-I elastic tensor compare well.[40, 45] 

For orthorhombic α-RDX, P-E, two separate RUS measurements, and ISS compare well, while 

the first Brillouin scattering measurement yielded values significantly stiffer than the other 

measurements.[40, 46-49] HMX, a more complicated crystal, showed even more disagreement in 

initial measurement, with differing results from complete and partial determinations by ISS, both 

disagreeing with a determination by Brillouin, which was, in contrast to the RDX difference, 

softer overall than the ISS results.[39, 40, 50, 51] The ISS partial determination used only the quasi-

longitudinal mode measured from one orientation of HMX, so the solution reported for the 

elastic tensor is not unique since the measurements substantially underdetermine the system. In 

fact, the quasi-longitudinal velocities from the partial ISS determination match well with the 

same ISS measurements from the full determination (cf. Fig. 2[50]), which included all observed 

quasi-longitudinal and quasi-transverse modes for three distinct orientations of HMX.  Since the 

ISS velocity data from the two studies is consistent and the measurements constrain the tensor 

much better in the second ISS study[50], the elastic tensor from the second study should be used 

instead of the under-determined results of the first ISS measurements on HMX.[51]  The disparity 

in these elasticity determinations for RDX and for HMX has directed research for about the last 
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10 years towards understanding whether the variance is a consequence of the measurement 

technique or of sample variation, including purity, inherent or induced defects, or another 

physical mechanism.  

The elastic tensor of PETN determined from Brillouin scattering and RUS measurements 

on the same crystalline sample showed variance in tensor components that persisted even when 

sample variation effects were removed, with anisotropic frequency dependence observed.[52] The 

origin of this frequency dependence was not determined but initiated experiments to explore 

whether such dispersion might explain the differences in reported tensor components for RDX 

and HMX. 

Photoacoustic measurements were performed in (100)-oriented RDX spanning acoustic 

frequencies from 0.5 to 15 GHz using ISS and picosecond acoustic interferometry (PAI).[53] 

These measurements agreed with previous ultrasonic and ISS measurements at lower 

frequencies, but were contrary to Brillouin measurements. The possible reasons for contradiction 

with reported Brillouin results were unknown, but good agreement with other techniques and 

lack of acoustic dispersion over six orders of magnitude in frequency were evidence that there is 

no frequency-dependent relaxation process that couples to linear acoustic waves in RDX at 

acoustic frequencies up to 15 GHz. The anomalous Brillouin measurements for RDX, which 

used an excitation frequency higher than 15 GHz, still needed to be explained. 

To resolve the contradiction in elasticity of RDX at high frequency and to investigate 

whether acoustic dispersion might be relevant above 15 GHz, the elastic tensor was recently 

determined again using Brillouin spectroscopy, with redundancy in velocity measurements, using 

multiple samples and with a detailed investigation of the data reduction technique.[54] Brillouin 

measurements on five different RDX single crystals showed agreement with all previous 
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determinations except the original Brillouin report.  Little variation was observed in the 

measured acoustic velocities in 5 different as-grown crystal samples, except for measurements 

that spanned regions of the crystals that were highly strained. Furthermore, the results showed 

that there is no frequency dispersion over many orders of magnitude when compared to all of the 

previous results, except, again, the previous Brillouin determination. The burden of 

demonstrating that the new results were correct was high, and required some explanation of the 

origin of inconsistensies in the previous data. The evaluation points to errors in the original 

report in velocity measurements and in their assigned modes, and to fitting procedures to 

produce tensor components from the measured velocities. There are multiple contradictions in 

the reported velocities for symmetrically equivalent phonons, and since contradictory velocities 

are reported for equivalent modes, the velocities themselves must be in error.[55] Despite all of 

the interesting physical explanations that may have produced the reported discrepancies, it 

appears that the culprit in the end is an error in measurement and data reduction. It is worth 

spending some time discussing how these errors could arise, and prescribing both how to 

evaluate and prevent such errors in the future. 

 

3.1 Evaluating Error in Measurements and Tensor Determinations 

Most molecular crystals are low symmetry and anisotropic. A limited number of phonons are 

frequently measured and not all acoustic modes are observed for a given wave vector, either due 

to experimental limitations or, occasionally, because modes have the same frequency. 

Observation of only a limited number of modes can result in subjective assignments of fast and 

slow transverse modes. Initial conditions of the analysis can substantially affect the resulting 

evaluation with a relatively small number of observed phonons. These effects often are not 
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incorporated into uncertainty analysis, so many elasticity measurements in explosives have 

reported unrealistically small uncertainties. This underestimation is due to reliance on the 

precision of the individual acoustic measurement rather than the stability of the overall tensor 

solution, including all aspects of the tensor refinement, and to a smaller extent, variations in 

material. 

As there are fewer measurements for HMX and the monoclinic structure results in more 

complicated analysis, we will use available data to evaluate how errors in measurement or 

analysis might translate to errors in the full elastic tensor determinations. Full elastic tensors for 

HMX have been presented by one experimental measurement with Brillouin scattering[39] and 

one full determination with ISS.[50]
  Both determinations used acoustic velocity measurements to 

produce a tensor through numerical inversion of the Cristoffel determinant.  

To investigate the possible sources of the discrepancies between the elasticity 

measurements of HMX, we analyzed the Brillouin data using all reported velocities for HMX 

associated with the Brillouin publication,[39] listed comprehensively elsewhere.[56] The analysis 

algorithm we employed utilizes a Levenberg-Marquardt algorithm to minimize errors between 

the measured acoustic velocities and those calculated from a trial elastic tensor. This algorithm 

was also used in the recent RDX Brillouin paper.[54] Our error minimization routine did not find 

the same elastic tensor as reported,[39] even if the elastic tensor reported was used as the initial 

conditions for the minimization routine. The elastic tensor components from the minimization 

also varied depending on the initial conditions from which the minimization was started. For 

monoclinic systems, the analytic solution for C22 can be calculated from the longitudinal velocity 

of the [010] phonon. The reported value for C22 (14.41±0.06 GPa) in the publication[39] does not 
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match the value calculated analytically from the velocity in the more comprehensive report 

(11.95 GPa).[56]  

In situations where the measurement velocities and directions and the low crystal 

symmetry give a complex potential energy surface for the minimization, local minima can be 

reached instead of the global minimum. Solution variation as a result of changing initial guess is 

a clear indication that the global minimum is not achieved. Large variations in solutions were 

observed in the comparisons we performed, suggesting that the solutions are highly unstable or 

that the minimization algorithm is inadequate. We suspect that the underlying cause of the 

instability is the availability of just 8 phonons with 14 unique modes in a system with so many 

degrees of freedom. This implies that the data is insufficient to uniquely determine the tensor.  

To examine the effects of using a small number of phonons in determining the elastic 

tensor in a low symmetry crystal, we performed some demonstrative calculations using an over-

determined data set on coesite, a metastable SiO2 polymorph. Coesite is a monoclinic crystal like 

HMX and has a self-consistent, well-determined elastic tensor from acoustic velocities in 80 

different crystallographic directions.[57] We have used this complete data set for coesite, and the 

acoustic velocities of the Brillouin data for HMX[56] to illustrate the difficulties that can arise 

from using a small number of phonons in the determination of a low symmetrythe elastic tensor. 

From the coesite data, we selected 8 phonons with 14 unique modes to be similar to the phonon 

directional distribution that was measured by Brillouin in HMX.[b] We executed the Levenberg-

Marquardt minimization routine on the full coesite dataset and on the dataset with the limited 

number of phonons. The starting parameters for the minimization routine were the coesite elastic 

tensor as reported. The results are shown in Table 1, along with Weidner and Carleton’s 
                                                
[b] Counting the first row listed in Weidner and Carleton,Table 1, as 1, the selected phonons were those from the 
following rows: 11, 13, 35, 42, 47, 59, 71, and 73.  
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originally reported tensor.[c] We then employed Monte Carlo analysis to vary each of the 

velocities of the acoustic modes with a normal distribution with a full width at half maximum of 

200 m/s, the estimated uncertainty as reported by Weidner and Carleton, and ran the 

minimization to yield the elastic tensors. Figure 2 shows the histogram results of the Monte 

Carlo analysis on the coesite data with all 80 measured phonons and on the coesite data from 

which we selected only 8 phonons. Despite using the same widths on the velocity distributions, 

the tensor components are significantly different, with uncertainties about an order of magnitude 

greater, on average, when the limited phonon dataset was used. Additionally, the distributions in 

uncertainties from the reduced phonon dataset do not correlate well with the elastic constants 

determined from the full dataset. The means and standard deviations from the Monte Carlo 

analysis for both the full and reduced datasets are given in Table 1. The large differences in the 

tensors and in their uncertainties that arise from reducing the number of phonons in the dataset 

illustrate the hazard of using a small data set to determine a low symmetry elastic tensor. 

 

Table 1. Reduction of phonon direction and velocity data for monoclinic coesite. The first 

columns of data reproduce the published tensor parameters and uncertainties from Weidner and 

Carleton.[57] The middle set of columns used the same full 80-phonon dataset but the 

minimization routine was a Levenberg-Marquardt minimization. The tensor was the result of a 

single minimization using the phonon directions and velocities as published. The Monte Carlo 

mean and Monte Carlo standard deviation show the mean and standard deviation of 104 trials of 

the Monte Carlo calculations, which used the phonon directions as published but varied the 

                                                
[c] Weidner and Carleton used an analysis method different from the one we employed, and they determined the 
uncertainty limits based on his algorithm that included the effects of the spatial distribution of the measured phonons 
and the stability of the tensor solution to the initial parameters. 
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velocities in a normal distribution with a width of 200 m/s centered on the published velocities.  

The final set of columns shows the same parameters as the middle set, but it is the result of using 

only the selected 8-phonons as explained in the text. This last dataset reveals large changes to the 

tensor elements and to their uncertainties. Histograms of the Monte Carlo results from the middle 

and final sets of columns are shown in Fig. 2.  

Tensor uncertainty Tensor Monte Carlo mean Monte Carlo std dev Tensor Monte Carlo mean Monte Carlo std dev
C11 160.8 2.9 160.3 160.2 2.9 130.2 132.2 38.4
C12 82.1 4.2 81.2 80.6 4.4 53.6 59.0 28.2
C13 102.9 6.6 103.1 103.3 6.3 105.3 101.9 30.8
C15 -36.2 1.8 -35.9 -35.9 1.8 -27.5 -35.3 19.1
C22 230.4 2.6 229.4 229.4 2.5 233.8 233.0 7.8
C23 35.6 8.1 35.7 35.8 7.4 68.5 59.3 18.5
C25 2.6 4.0 3.8 3.7 3.8 16.5 12.4 21.9
C33 231.6 4.4 230.4 230.4 4.4 224.0 220.6 13.0
C35 -39.3 2.4 -39.5 -39.4 2.4 -31.1 -34.7 17.3
C44 67.8 3.0 67.8 67.5 3.2 53.1 56.0 7.1
C46 9.9 2.0 9.6 9.5 2.0 11.8 12.1 4.2
C55 73.3 2.3 73.0 72.9 2.4 98.3 97.6 22.2
C66 58.8 1.8 58.2 58.5 2.0 56.7 57.2 4.4

Coesite results as 
published

Full coesite measurements with Levenberg-Marquardt 
minimization and Monte Carlo uncertainty analysis

Limited number of coesite measurements with number and 
directions of phonons similar to HMX Brillouin measurements
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Fig. 2. Histograms of the Monte Carlo distributions of the elastic tensor components for coesite 

using Weidner and Carleton’s full dataset[57] and the reduced dataset with 8 phonons.  Normal 

distributions of the velocities with widths of 200 m/s were used in the Monte Carlo evaluation. 
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To demonstrate the effect of the coesite example on the available HMX data, Fig. 3 

shows the same type of Monte Carlo analysis with 104 trials in which the acoustic data from 

Stevens and Eckhardt[56] was evaluated with 1% uncertainties in the velocity measurements. The 

shapes of the distributions in Fig. 3 are more normal than those in the 8 phonon dataset of Fig. 2, 

but their accuracy cannot be determined since there is not a heavily overdetermined dataset with 

which to compare and the shapes of the distributions do not necessarily imply that the result is 

accurate (consider, for example, C44 in Fig. 2).  
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Fig. 3. Histograms of the Monte Carlo distributions of the elastic tensor of HMX using the 

velocities and directions associated with the Brillouin determination[56] and a normal velocity 

distribution of 1%. 
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An often-overlooked source of additional error is the stability of the numerical solution. 

The initial conditions for the error minimization can have a substantial influence on the final 

solution if the number and directions in which the measurements are made result in a complex 

landscape for the multivariable minimization. When minimizing errors with large numbers of 

variables, such as 13 tensor components for monoclinic crystals, local minima may be common. 

Therefore, the stability of the numerical minimization to variations in the starting parameters 

must be evaluated. Monte Carlo evaluation of the minimization of the Cristoffel determinant 

illustrates numerically how local minima, arising from limited directional acoustic data, may 

cause error in determining tensor elements in low-symmetry systems. In this approach, the 

minimization is repeated many times, allowing for the initial guess to vary. The sensitivity of the 

resulting tensor to the initial guess can be viewed as a histogram, which shows the statistical 

likelihood of multiple minima and the overall error that these minima introduce. To represent the 

large uncertainties indicative of an initial guess used for materials with an undetermined elastic 

tensor, we set the initial parameters to be randomly distributed about Weidner and Carleton’s 

coesite tensor with the widths of the distributions as +/- 75 GPa for C11, C22, and C33 and as +/- 

50 GPa for all other components.d The histograms of the Monte Carlo results are shown in Fig. 4. 

Using the full 80 phonon coesite dataset, the vast majority of the solutions found converged to 

the coesite tensor reported.  Conversely, when using the 8-phonon dataset, the changes in the 

initial parameters of the minimization frequently resulted in different elastic tensor results.  

                                                
[d] Due to the large widths of the distributions for the initial guesses, the randomly generated initial guesses 
sometimes resulted in a physically unrealistic tensor, i.e. when the tensor was used to calculate the acoustic 
velocities for the relevant phonons, imaginary velocities were calculated.  The trials for which the initial guesses 
created physically unrealistic tensors resulted in non-convergence of the minimization routine and were excluded 
from the histograms shown in Fig. 4.  For the 103 trials calculated, 177 of the 80 phonon trials and 100 of the 8 
phonon trials resulted in this non-convergent condition. 
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Fig. 4. Histograms of the Monte Carlo distributions of the elastic tensor components of 

coesite that employed variations in the initial parameters of the multivariable minimization 

routine.  The black histograms show the results for the dataset of all 80 phonons measured by 

Weidner and Carleton.[57] These data result in a single, stable solution for the elastic tensor.  The 
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grey histograms used the dataset of only 8 phonons, and they show that there are many local 

minima in the multivariable minimization that can produce incorrect tensor results. 

 

We repeated this same Monte Carlo evaluation on the initial parameters for the Brillouin 

HMX data with distributions of +/- 7.5 GPa for C11, C22, and C33 and of +/-5 GPa for all other 

components with the distributions centered on the tensor reported by Stevens and Eckhardt.[39]  

These results are shown in Fig. 5. The large distributions in many of the tensor parameters 

indicate that the minimization surface is highly complex and that changing the initial parameters 

of the minimization can significantly influence the tensor result. 
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Fig. 5. Histograms of the Monte Carlo distributions of the elastic tensor components of HMX 

using variations in the initial parameters of the multivariable minimization routine using only 8 

phonons.  These distributions show multiple local minima and large uncertainties. 

 



 23 

Determining elastic tensors in these crystals requires a high degree of redundancy of 

measurements of acoustic velocities, on multiple samples, and a statistical evaluation of the 

reduction of the velocities to the tensor components. Due to the complexity of elasticity in low 

symmetry materials and the occasionally subjective assignment of acoustic modes, all acoustic 

velocity measurements and pertinent geometries be made available when data are published to 

permit evaluation of the data reduction and consistency in detail. Such evaluation is critical if the 

values are to be used in simulations of material response.  

 

4 Prediction of Elastic Tensors 

While predictions of structure are easily checked against structure determinations that are known 

to be of high accuracy, until now, the elastic tensor measurements were not significantly 

constraining to compare to deformation predictions, nor were true errors known for the 

measurements. Prediction tools for elasticity are important because (1) not all energetic 

molecular crystals are readily available as pristine single crystals, so measurements may not be 

possible by the available techniques, (2) crystalline phases accessed under high pressure may not 

be recoverable to standard temperature and pressure conditions, and (3) even if they are, we have 

shown that the complete tensor determination requires a significant amount of work to have high 

confidence in the results. Hence, capabilities for accurate computation and prediction of the 

tensor of single crystal elastic constants are appealing goals. 

 

4.1 Computational Approaches 

An interatomic potential gives the potential energy of the system as a function of the relative 

positions of all of the atoms.[58, 59] Single crystal elastic constants have been computed using 
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interatomic potentials since at least the mid-1950s.[60] The most common route to the 

computation of elastic constants involves the direct evaluation of the elastic strain energy, W ε( ) ,

W ε( ) , upon the distortion of the crystal by the application of an Eulerian strain tensor, ε ij ,ε ij , 

where in Voigt notation, 

ε1 ε6 ε5
ε6 ε2 ε4
ε5 ε4 ε3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

ε11 2ε12 2ε13
2ε12 ε22 2ε23
2ε13 2ε23 ε33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

   

    (1) 

and 

W ε( ) =V0 σ iε iξi +
1
2

Cijε i
i, j
∑ ξiε jξ j

i
∑
⎡

⎣
⎢

⎤

⎦
⎥ ,       (2) 

where V0  is the unstrained volume of the simulation cell, σ i  is an element of the stress tensor (in 

Voigt notation), ξi  = 1 if i ≤ 3 or 2 if i ≥ 4, and Cij  is the matrix of single crystal elastic 

constants.[61-63] The strain energy is computed over a small set of strains of magnitude typically 

less than 1%, and a least square fit is made to the resulting parabola with a polynomial to obtain 

the elastic constant or linear combination of elastic constants probed by the applied strain. The 

use of small strains in the calculation is necessary to ensure that i) the Eulerian and Lagrangian 

strain measures are essentially indistinguishable and ii) the applied strain does not exceed the 

ideal strength of the solid.[64] The latter is particularly important in complex molecular crystals 

with many internal degrees of freedom. 

 An alternative route to the computation of single crystal elastic constants employs the 

stress tensor derived from the interatomic potential either numerically or via the virial 

theorem,[58] where the dependence of the computed stress on the applied strain yields the elastic 

constants directly via the generalized form of Hooke’s law, 
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 Cij =
∂σ i

∂ε j

          (3) 

 

 The strain energy or direct approaches to the computation of elastic constants are 

relatively straightforward to implement and apply. However, the calculations should be 

performed starting from a simulation cell where the stress tensor and all interatomic forces are 

fully relaxed. The internal degrees of freedom of the simulation cell should also be relaxed again 

to a high tolerance upon each distortion of the lattice. These procedures are computationally 

demanding for low-symmetry molecular crystals. 

 The strain energy approach, Eq. 2, is of practical use only at zero temperature. The direct 

method, Eq. 3, can instead be used in molecular dynamics simulations in the canonical ensemble 

(constant number of particles, volume, and temperature, NVT) to generate single crystal elastic 

constants as a function of temperature.[65] At finite temperature the stress tensor used to derive 

the elastic constants includes contributions from both the interatomic forces and momenta. The 

use of the direct method within a molecular dynamics framework is computationally demanding 

since it requires i) a long-duration simulation in the isothermal-isobaric (NPT) ensemble to 

determine with high fidelity an equilibrium set of lattice parameters at the target temperature and 

pressure, and ii) at least 3 to 9 long duration simulations in the canonical ensemble during which 

the ensemble average of the stress tensor is computed for each distortion, ε j . For an 

orthorhombic molecular crystal, for instance, this translates to 19 to 55 simulations each 

comprising of the order 106 time steps to evaluate the 9 independent elastic constants at each 

temperature and pressure. 
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 The Parrinello-Rahman boundary condition[66-68] provides a more elegant route to the 

computation of the temperature dependence of single crystal elastic constants. The equations of 

motion for the Parrinello-Rahman boundary condition are derived from an extended Lagrangian 

that includes a strain energy arising from the distortion of the simulation cell. The application of 

the Parrinello-Rahman boundary condition gives rise to fluctuations in the dimensions and shape 

of the simulation cell that are consistent with the isothermal-isostress ensemble, NσT . The 

fluctuations in the dimensions of the simulation cell are related to the elastic compliance tensor, 

sijkl , at the specified σ and temperature, 

sijkl =
kBT
V0

ηijηkl ,
  

       (4) 

where kB is Boltzmann’s constant, ηij are elements of the Lagrangian strain tensor, and 

denotes an ensemble average.[67] The matrix of single crystal elastic constants, Cij , are derived 

from the compliance tensor by first transforming it into a 6 × 6matrix in Voigt notation via the 

rules, 

Smn =

sijkl  if m and n ≤ 3

2sijkl  if m or n > 3

4sijkl  if m and n > 3

⎧

⎨
⎪⎪

⎩
⎪
⎪

         (5) 

followed by the computation of its matrix inverse, that is, C = S−1 .[69, 70] While the Parrinello-

Rahman boundary condition will in principle yield all of the single crystal elastic constants of a 

molecular crystal from one 106-107 time step trajectory, its application is often fraught with 

difficulties.[71] The results obtained from trajectories computed using the Parrinello-Rahman 

boundary conditions tend to depend sensitively on the properties of the barostat used to achieve 

the target stress. As a result, the Parrinello-Rahman method is typically employed within a 
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Monte Carlo simulation framework that avoids the application of a barostat completely.[71] 

Nevertheless, we report a set of elastic constants for RDX obtained from a molecular dynamics 

trajectory computed using the Parrinello-Rahman framework that is of comparable accuracy to 

those obtained using the direct method but is a fraction of the total computational cost.  

 

4.2 Application to α-RDX  

We have computed the elastic constants of α-RDX at zero and finite temperatures using the four 

methods discussed in the previous section. The calculations at zero temperature employed 

dispersion-corrected density function theory with the strain energy (Eq. 2) and direct (Eq. 3) 

approaches. The calculations at finite temperature were performed using the Smith-Bharadwaj 

force field for nitramines[72] via the direct (Eq. 3) and Parrinello-Rahman (Eqs. 4-5) approaches. 

The elastic constants of RDX have been evaluated experimentally and computationally using a 

number of approaches such that the accuracy of our predictions can be assessed. 

 

4.2.1 Dispersion-Corrected Density Functional Theory at Zero Temperature 

Density functional theory is considered to be the standard in terms of accuracy for modeling 

interatomic bonding in condensed phase systems.[73, 74] Traditional implementations of density 

functional theory tend to underestimate the strength of weak dispersion, or van der Waals 

interactions, between molecules.[75]  Since weak dispersion interactions contribute significantly 

to cohesion in organic molecular crystals, traditional density functional theory systematically 

underestimates equilibrium mass densities. Dispersion-corrected density functional theory aims 

to improve the description of dispersion interactions either through an improved model of the 

underlying electronic structure, or via the addition of a set of atom-centered pair potentials.[76-85] 
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We have taken the latter route and apply in our calculations the 3rd generation empirical 

dispersion corrections (DFT-D3(BJ)) of Grimme and co-workers.[79] 

 Our dispersion-corrected density functional theory calculations were performed using the 

Quickstep package with the cp2k code[86] with the generalized gradient approximation exchange-

correlation functional of Perdew, Burke, and Ernzerhof (PBE).[87] The TZV2P Gaussian basis 

set[86] with Goedecker-Teter-Hutter pseudopotentials[88] was used in conjunction with energy cut-

offs for the dual plane wave basis of 1000 Ry and REL_CUTOFF = 80 Ry. The TZV2P basis 

gave a predicted equilibrium volume for the RDX unit cell that changed only at the fourth 

significant figure upon increasing the basis set size to QZV2P and QZV3P and as a result we 

believe this basis to be optimal for modeling RDX. 

 The α-RDX unit cell was optimized by static relaxation using the structure determined by 

Choi and Prince[89] as a starting configuration. The self-consistent field calculations were 

performed to a tolerance of 10-7 and the relaxation of the atomic coordinates was terminated 

when the magnitude of the force acting on every atom was less than 5 ×10−6  eV/Å. The final 

lattice parameters were a = 13.383, b = 11.552, and c = 10.857 Å with V0 =1678.553  Å3. These 

values compare very well to those obtained by Taylor at a similar level of theory,[90] as well as 

experiment.   

 The single crystal elastic constants C11 , C22 , and C33  were computed by the application 

of non-volume conserving strains of the form, 

ε =
1+δ 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

,

    

      (6) 
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ε =
1 0 0
0 1+δ 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,

  

        (7) 

and, 

ε =
1 0 0
0 1 0
0 0 1+δ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,

   

       (8) 

respectively, where −0.0025 ≤ δ ≤ 0.0025  in increments of δ = 0.0005. These strain tensors also 

allowed us to evaluate C12 , C13 , and C23  by the direct approach, since, for example, 

C12 = ∂σ1 ∂ε2 . The remaining elastic constants were computed via the application of the volume 

conserving strain tensors listed in Ref. [63] The internal degrees of freedom in the RDX 

simulation cell were relaxed after the application of the strain tensors until the magnitude of the 

force acting on every atom was less than 5 ×10−5  eV/Å before the evaluation of the total 

potential energy and stress tensor.  

 We present in Table 2 the single crystal elastic constants of RDX at zero temperature 

evaluated using the strain energy and direct approaches via dispersion corrected density 

functional theory (DFT-D3(BJ)). The elastic constants computed by Taylor using at the DFT-D3 

level of theory with the PBE exchange-correlation functional and the QZV2P or QZV3P 

Gaussian basis sets via the direct approach are also presented as a comparison with our results.[90] 

We provide two values for C12 , C13 , and C23  since each elastic constant can be computed by the 

application of two different strain tensors, that is, ∂σ1 ∂ε2 = ∂σ 2 ∂ε1 , for example. We also 

present for each set of elastic constants their root-mean-square (RMS) error with respect to the 

elastic constants measured by Bolme and Ramos at room temperature.[54] 
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Table 2. The single crystal elastic constants of α-RDX in GPa computed at zero temperature 

using DFT-D3(BJ) by the strain energy (Eq 2) and direct (Eq 3) approaches. Similar calculations 

by Taylor from Ref [90] are also presented. The root mean square error between the sets of 

computed elastic constants and the experimental values of Bolme and Ramos measure the level 

of agreement between the calculations and experiment. 

Tensor component Strain energy (GPa) Direct (GPa) Taylor (direct) 

(GPa) 

 25.9 25.7 29.958 

 20.6 20.8 25.508 

 22.2 21.9 23.610 

 6.15 5.86 5.343 

 4.51 4.62 4.829 

 7.30 7.29 8.586 

 8.08 7.74 & 7.74 7.484 

 4.84 4.42 & 4.45 4.523 

 7.21 7.02 & 7.07 5.282 

RMS error 1.296 1.274 2.915 

 

  

C11

C22

C33

C44

C55

C66

C12

C13

C23
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 The elastic constants computed by the strain energy and direct methods as part of this 

work are mutually consistent as expected. Nevertheless, individual elastic constants may differ 

by ± 0.2 GPa depending on the method of calculation. The two values for each of C12 , C13 , and 

C23  obtained by the direct approach each differ by less than 1%. The agreement between the two 

calculations for each of C12 , C13 , and C23  from the direct method as well as the agreement 

between the direct and strain energy approaches provides a consistency-check for the 

calculations that is useful for identifying errors.  The RMS error for both sets of computed results 

with respect to the experimental data from Bolme and Ramos [54] are almost identical and are less 

than 1.3 GPa. The zero temperature, zero pressure elastic constants presented by Taylor are 

generally in good agreement with our data. However, the RMS error between Taylor’s elastic 

constants and experiment of 2.9 GPa is higher than those from our calculations. This discrepancy 

can be attributed to our use of different basis sets, dispersion corrections, and tolerances on the 

relaxation of the internal degrees of freedom. 

 The elastic anisotropy of an orthorhombic crystal can be quantified by the shear 

anisotropy factors 

A1 =
4C44

C11 +C33 − 2C13
 ,         (9) 

A2 =
4C55

C22 +C33 − 2C23

,        (10)  

and, 

A3 =
4C66

C11 +C22 − 2C12
.         (11) 

Each factor equals unity for an elastically isotropic material.[63] Any departure of the values from 

unity is a measure of the degree of shear anisotropy. The values of A1 , A2 , and A3  derived from 
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our computed elastic constants, data from Ref [90], and experiment are presented in Table 3. The 

anisotropy factors derived from experimental data reveal that A1  and A2  indicate large elastic 

anisotropy while A3  corresponds to a high level of elastic isotropy. All three sets of calculated 

elastic constants capture the relative values of A1 , A2 , and A3  well. However, better quantitative 

agreement with experiment is obtained from the DFT-D3(BJ) calculations with the TZV2P basis 

set reported here.   
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Table 3. Shear anisotropy factors for RDX computed from the elastic tensors derived from the 

elastic tensors obtained from the strain energy and direct approaches, Ref. [90], and the room 

temperature experimental data from Bolme and Ramos.[54] 

 Strain energy Direct Taylor [90] Experiment [54] 

 0.640 0.605 0.480 0.665 

 0.636 0.645 0.501 0.641 

 0.951 0.940 0.848 1.025 

 

Based on the sets of single crystal elastic constants for α-RDX reported here and in Ref. 

[90] that are derived from dispersion-corrected density functional theory calculations, it is clear 

that computational methods are capable of providing quantitatively accurate predictions for the 

elastic properties of energetic molecular crystals. However, the results are evidently sensitive to 

the details of the calculation, such as the basis set or plane wave cut-off energy, and the precise 

form of the dispersion corrections. Furthermore, electronic structure calculations at zero 

temperature do not take into account anisotropic, temperature-dependent softening of the moduli. 

 

4.2.2 Elastic Constants at Finite Temperature via Molecular Dynamics Simulations 

First principles electronic structure calculations based on density functional theory are far too 

computationally expensive to be applied in long-duration molecular dynamics simulations on the 

thousands of atoms that are required to compute elastic constants at finite temperature. The non-

reactive force field for nitramines developed by Smith and Bharadwaj[91, 92] is computationally 

very efficient and it has been demonstrated to capture the structure of the α-RDX unit cell, the α-

to-γ phase transformation, and the properties of crystal defects in RDX with at least qualitative 

A1

A2

A3
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accuracy.[24, 29, 65, 92-94] The Smith-Bharadwaj force field remains a popular tool for the study of 

RDX under a range of stimuli. 

 We have computed the elastic constants of RDX at 300 K and zero pressure using the 

direct method (Eq. 3) and the Parrinello-Rahman boundary condition with the Bharadwaj force 

field as implemented in the LAMMPS package.[95] Our simulations used simulation cell 

comprising 3× 3× 3  α-RDX unit cells under three dimensional periodic boundary conditions and 

a time step of the integration of the equations of motion of 0.5 fs. The use of larger simulation 

cells did not affect the computed elastic constants. The ensemble average of the lattice 

parameters of the α-RDX unit cell at 300 K and zero pressure from isothermal-isobaric (NPT) 

molecular dynamics trajectories are a = 13.496, b = 11.554, and c = 10.560 Å, with 

V0 =1646.650  Å3. All three lattice parameters are in excellent agreement with experiment and 

our DFT-D3(BJ) calculations.  

 The elastic constants derived from isothermal-isostress (NσT ) simulations using the 

Parrinello-Rahman formalism were found to be sensitive to the properties of the barostat 

implemented in LAMMPS. Consistency between the elastic constants obtained from the direct 

method and the Parrinello-Rahman formalism could be obtained only if the thermostat chains on 

the barostat were removed.[96] Finally, the time constant over which the barostat relaxes the 

stresses was found to yield sensible elastic constants when set in the range 1000 to 2000 fs. 

These time intervals are consistent with the heuristic argument that pressure fluctuations should 

be relaxed over the time interval required for an acoustic phonon to traverse the simulation cell. 

Measured sound velocities in RDX are of the order 3500 m/s,[53] yielding a time constant of 

approximately 1200 fs for our simulation cell. 
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 The nine independent elastic constants of α-RDX computed via the Parrinello-Rahman 

formalism are presented as function of the simulation time in Fig 6. It is evident that trajectories 

approaching  time steps are required to converge the values of the elastic constants to 

within about 1 GPa. The converged values are presented in Table 4.  

 

 

Figure 6. Single crystal elastic constants of α-RDX computed at 300 K via the Parrinello-

Rahman method as function of the length of ensemble average of the strain fluctuations. 

Whereas in this case the elastic constants appear to reach steady values after averaging the strain 

fluctuations over only 1 ns, depending on the temperature, pressure, or the properties of the 

barostat, significantly longer trajectories may be required. 
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Table 4. Single crystal elastic constants of α-RDX in GPa at room temperature and zero pressure 

computed using the Smith-Bharadwaj force field (this work and Munday et al.[65]), and the 

Sorescu-Rice-Thompson potential energy surface for RDX.[97] The elastic tensor measured by 

Bolme and Ramos[54] at room temperature by Brillouin spectroscopy is presented for 

comparison. 

Elastic constant Parrinello-

Rahman (this 

work) 

Direct 

(this work) 

Direct  

[65] 

Parrinello-

Rahman with 

Monte Carlo 

sampling [97] 

Experiment[54] 

 21.1 22.1 25.0 26.9 25.8 

 19.6 20.4 23.8 24.1 20.1 

C33   18.7 19.9 23.4 17.7 18.9 

 3.03 2.92 3.1 8.4 5.3 

 4.66 4.85 7.7 5.3 4.2 

 7.15 7.26 5.2 7.6 7.2 

 9.78 9.56 & 9.61 10.6 6.27 8.3 

 6.37 5.96 & 5.82 7.6 5.68 6.4 

 7.78 7.52 & 7.74 8.80 6.32 6.4 

 

  

C11

C22

C44

C55

C66

C12

C13

C23
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 The accuracy of the elastic constants obtained from our NσT  molecular dynamics 

simulations was assessed by applying the direct method (Eq. 3) at finite temperature. The same 

3× 3× 3  unit cell with equilibrated lattice parameters was used the starting configuration for a 

series of simulations in the canonical ensemble. The simulation cell was deformed by applying 

the strain tensors given in Eqs. 6-8 with −0.004 ≤ δ ≤ 0.004  in increments of δ = 0.001. A larger 

strain increment than in our density functional theory calculations was used owing to the 

statistical noise in the long ensemble averages of the elements of the stress tensor. Each 

trajectory was allowed to thermally equilibrate for 50 ps after which we computed ensemble 

averages of the elements of the stress tensor over at least  time steps, or 2.25 ns. The 

resulting set of elastic constants is presented in Table 4.  

 The two sets of elastic constants that we derived from the Smith-Bharadwaj force field 

using the Parrinello-Rahman and direct approaches are in good qualitative agreement with, but 

systematically softer than those tabulated by Munday et al. Furthermore, both sets of elastic 

constants computed here, as well as those computed by Sewell and Bennett give C66 >C55  

whereas those tabulated by Munday et al. indicate that C66 <C55 . We attribute these 

discrepancies to the use in Ref [65] of smaller simulation cell, a larger range of strains, and shorter 

ensemble averages. A positive conclusion from this work is that the application of the Parrinello-

Rahman method in a molecular dynamics framework yields a set single crystal elastic constants 

that are in excellent quantitative agreement with those obtained from the direct approach but at a 

significantly smaller computational cost. 

 We also list in Table 4 the set of elastic constants of α-RDX computed by Sewell and 

Bennett[97] using the potential energy surface for nitramines developed by Sorescu, Rice, and 

4.5 ×106
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Thompson[98-101] with rigid molecules. Sewell and Bennett sampled the strain fluctuations 

required by the Parrinello-Rahman method (Eq. 4) using Monte Carlo methods. While the 

Sorescu-Rice-Thompson potential energy surface evidently predicts elastic constants that are 

stiffer than those derives from the Smith-Bharadwaj force field, they are in good quantitative 

agreement with the available experimental data. 

 

4.3 Computed Elastic Constants for Other Energetic Molecular Crystals 

4.3.1 TATB 

Planar TATB molecules form a layered triclinic unit cell that features strong intermolecular 

hydrogen bonding. The low-symmetry triclinic unit cell gives rise to 21 independent elastic 

constants. All 21 elastic constants were computed by Bedrov et al.[102] using non-reactive 

polarizable and non-polarizable force fields that were developed by the authors. Bedrov et al. 

computed single crystal elastic constants via fluctuations in the Lagrangian strain tensor (Eq. 4). 

However, these simulations combined molecular dynamics trajectories in the canonical ensemble 

with Monte Carlo sampling of variations in the shape of the simulation cell. The set of elastic 

constants computed at 300 K and atmospheric pressure that are tabulated in Ref. [102] are 

presented in Table 5. Using the same Parrinello-Rahman approach the authors also computed the 

dependencies of the single crystal elastic constants on temperature and pressure.  

 Valenzano et al.[103] reported first principles electronic structure calculations of a subset 

of the elastic constants of TATB. These authors used a large Gaussian basis set, 6-311G(d,p) 

with a dispersion-corrected version of the B3LYP hybrid exchange-correlation functional and 

computed elastic constants via evaluating the strain energy, Eq. 2. As we demonstrated for α-

RDX in Section 4.2.1, this methodology yields single crystal elastic constants that can be in 
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excellent agreement with experiment. Valenzano et al. went further by attempting to capture the 

temperature dependence of the elastic constants by performing their zero temperature 

calculations on a simulation cell that is constrained to the measured mass density at a given 

temperature. Those elastic constants reported by Valenzano et al. are presented in Table 5. 

 The pressure dependence of a sub-set of the elastic constants of TATB were computed by 

Ojeda and Cagin at zero temperature using a generic, non-reactive force field.[104] All eight of the 

elastic constants reported in Ref. [104] were found to change discontinuously upon a pressure-

induced transformation in the hydrogen bonding network of the crystal that was deduced from a 

series of condensed-phase density functional theory calculations. Repeating these elastic constant 

calculations with the Bedrov force field for TATB[102] and/or dispersion-corrected density 

functional theory would be valuable. Predicted elastic constants have been used to develop 

thermoelastic constitutive relations for TATB.[105] 
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Table 5. Computed elastic constants of TATB at 300 K from Refs. [102] and [103]. 

 Bedrov et al. (non-

polarizable force 

field) 

Bedrov et al. 

(polarizable force 

field) 

Valenzano et al. 

(DFT-D) 

 57.7 ± 0.5 65.7 ± 0.5 78.4 

 58.0 ± 1.0 62.0 ± 1.0 - 

 17.0 ± 0.5 18.3 ± 0.5 19.7 

 1.0 ± 0.3 1.4 ± 0.3 0.9 

 0.6 ± 0.2 0.68 ± 0.06 - 

 20.3 ± 0.8 21.6 ± 0.7 29.7 

 16.2 ± 0.7 18.5 ± 0.5 16.8 

 3.2 ± 0.5 4.0 ± 2.0 0.8 

 0.1 ± 0.1 -0.2 ± 0.3 - 

 -0.9 ± 0.2 -1.0 ± 0.1 - 

 0.0 ± 1.0 1.0 ± 1.0 - 

 5.7 ± 0.6 5.0 ± 1.0 - 

 0.6 ± 0.2 0.6 ± 0.2 - 

 -0.5 ± 0.3 -0.5 ± 0.2 - 

 2.0 ± 0.8 1.0 ± 1.0 - 

 -0.1 ± 0.4 0.2 ± 0.3 - 

 -0.3 ± 0.2 -0.4 ± 0.1 - 

 -1.0 ± 0.5 -0.4 ± 0.7 - 

 0.01 ± 0.04 0.1 ± 0.2 - 

 -0.5 ± 0.1 0.3 ± 0.2 - 

 0.1 ± 0.1 0.4 ± 0.1 - 

 

C11
C22

C33

C44

C55

C66

C12
C13
C14
C15
C16
C23

C24

C25

C26

C34

C35

C36

C45

C46

C56
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4.3.2 PETN 

PETN adopts a comparatively high symmetry tetragonal unit cell containing two molecules. Its 

space group is P421c  which belongs to the point group 42m . [106] Hence, PETN has 6 

independent elastic constants.[107]  

 The elastic constants of PETN have been computed at finite temperature using Parrinello-

Rahman method in a combined molecular dynamics and Monte Carlo scheme by Borodin et al. 

[108] Elements of the tensor of elastic constants have also been computed using regular and 

dispersion-corrected implementations density functional theory at zero and finite temperature by 

Zhao et al. [109], Conroy et al. [110], and Valenzano et al. [103] Large discrepancies are seen in the 

three sets of elastic constants computed using density functional theory. This is surprising given 

the relative simplicity of the PETN unit cell, that all three groups used the strain energy 

approach, and that both Zhao et al. and Conroy et al. employed plane wave basis sets with the 

PBE exchange-correlation functional. The computed sets and sub-sets of elastic constants are 

presented with the experimental determination by Sun et al. [40] in Table 6. 
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Table 6. Single crystal elastic constants of PETN in GPa derived from an empirical, non-reactive 

interatomic potential using the Parrinello-Rahman method,[108] density functional theory,[109, 110] 

and experiment. The DFT-D constants at 295 K correspond to zero temperature dispersion-

corrected density functional theory calculations performed at the room temperature mass density 

of PETN.[103]  

Elastic constant Parrinello-

Rahman, 

300 K [108] 

DFT (PBE 

GGA),  0 

K [109] 

DFT (PBE 

GGA), 0 

K [110] 

DFT-D, 0 

K [103] 

DFT-D, 

295 K 

[103] 

Experiment 

[40] 

 
17.6 ± 0.2 10.1 18.4 37.5 17.4 17.12 

 10.5 ± 0.1 6.90 14.2 27.2 11.6 12.18 

 4.66 ± 0.03 - - 10.3 4.2 5.03 

 4.92 ± 0.03 - - 3.7 2.6 3.81 

 4.7 ± 0.1 - - 10.2 4.6 6.06 

 6.65 ± 0.1 - - 19.4 7.8 7.98 

 

  

C11

C33

C44

C66

C12

C13
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4.3.3 HMX 

The 13 independent elastic constants of HMX have been evaluated experimentally and 

theoretically using a spectrum of methods. Sewell et al. [71] computed the tensor of elastic 

constants at room temperature using a combined molecular dynamics and Monte Carlo 

formalism with the Parrinello-Rahman method and the Smith-Bharadwaj non-reactive force field 

for nitramines.[72] More recently Peng et al. [111] reported the computation of the elastic constants 

of HMX via dispersion-corrected density functional theory (DFT-D2) at zero temperature via the 

strain energy method (Eq. 2). Both sets of computed elastic constants are presented along with 

the room temperature experimental data of Sun et al.[50] in Table 7. The set of elastic constants 

predicted by Sewell et al. using an empirical force field is in remarkably good agreement with 

the measurements by Sun et al. The zero temperature DFT-D2 calculations generally 

overestimate the experiment data. It is possible that the discrepancies between the DFT-D2 

calculations and experiment arise from the neglect of the thermal softening of the elastic moduli 

in the former. Experimentally determined elastic constants for HMX have been used to predict 

anisotropic deformation properties,[112] and to predict phonon density of states, equation of state, 

and phase behavior for HMX.[113] Elasticity of HMX has also been used as a starting point in 

predictions of the phenomena of anisotropic deformation in pore collapse relevant to hot spot 

initiation.[114] 
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Table 7. The single crystal elastic constants of β-HMX in GPa from combined molecular 

dynamics and Monte Carlo simulations with the Parrinello-Rahman method at 300 K,[71] 

dispersion-corrected density functional theory using the strain energy method at zero 

temperature,[111] and experiment.[50]  

Tensor component Parrinello-Rahman, 

300 K [71] 

Strain energy, DFT-

D2 [111] 

Experiment [50] 

 22.2 ± 0.3 29.3 20.58 

 23.9 ± 0.5 25.0 19.69 

 23.4 ± 0.5 27.5 18.24 

 9.2 ± 0.2 13.6 9.92 

 11.1 ± 0.1 12.8 7.69 

 10.1 ± 0.1 13.9 10.67 

 9.6 ± 0.7 10.6 9.65 

 13.2 ± 0.3 13.8 9.75 

 -0.1 ± 0.3 -2.1 -0.61 

 13.0 ± 0.2 16.6 12.93 

 4.7 ± 0.2 6.2 4.89 

 1.6 ± 0.2 1.1 1.57 

 2.5 ± 0.3 6.8 4.42 

 

  

C11

C22

C33

C44

C55

C66

C12

C13

C15

C23

C25

C35

C46
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4.3.4 γ-RDX 

γ-RDX is a polymorph of RDX that is stable under hydrostatic pressure in excess of 4 GPa at 

room temperature.[115] Like α-RDX it has an orthorhombic unit cell but with space group Pca21 

rather than Pbca.[94, 116] The physical properties of the high pressure phases of energetic materials 

can potentially control effect impact sensitivity if the principal Hugoniot crosses those phase 

boundaries. The simulation methods described in the previous sections enable the computation of 

the single crystal elastic constants of phases stable only at elevated pressures. The molecular 

dynamics techniques also enable the evaluation of elastic constants at elevated pressures and 

temperatures. 

 The elastic constants of γ-RDX were computed under hydrostatic pressures spanning 4 to 

11 GPa and temperatures from 200 to 550 K using the Smith-Bharadwaj force field by Munday 

et al.[65] and Josyula et al.[117] Both works employed identical implementations of the direct 

method, Eq. 3. Taylor also computed the elastic constants of γ-RDX via dispersion corrected 

density functional theory (DFT-D3) at zero temperature in the pressure interval 4 to 8 GPa.[90] 

The accord between the molecular dynamics simulations and dispersion-corrected density 

functional theory calculations is generally good.  

 

5 Conclusions 

Solid mechanics of explosives is fundamental to predictions of mechanical response and the 

following chemical response that can result from thermomechanical stimuli. It remains a difficult 

task to link mechanisms directly to initiation pathways. However, the fundamental mechanics are 

still of primary importance for many reasons. In this article we have shown that the persistence 

of many researchers has made far greater precision available in elastic properties through 
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experimentation and simulation. These properties are precursors for subsequent dynamic 

material behaviors. The availability of many measurements makes it possible to evaluate the 

origins of differences and limits of accuracy of fundamental property measurements, and the 

influence upon predictions. 

In this review we have summarized the elastic properties, which is only the initial stage 

of mechanical deformation, but has proven to be a significant challenge in experiments and 

simulations. The simplicity of Hooke’s Law as a starting point is beguiling. The complexity of 

explosive materials is formidable. Moving beyond structure determination, understanding of 

basic elastic deformation requires considerable effort for both experiment and simulation. The 

materials phenomena between elasticity and hydrodynamics is a subject for a subsequent review. 

Deformation in the plastic regime, to hydrodynamics and initiation, requires a firm foundation in 

structure and elasticity, and is further complicated in many other ways. A translated quotation 

from the 1759 writings of mathematician Alexis Clairaut, discussed by many in reference to the 

dispute between Newton and Hooke over the originator of the ideas of gravitation, seems apt: 

“what a distance there is between a truth glimpsed and a truth that is demonstrated.”[e] 
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